If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-16x-42=0
a = 8; b = -16; c = -42;
Δ = b2-4ac
Δ = -162-4·8·(-42)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-40}{2*8}=\frac{-24}{16} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+40}{2*8}=\frac{56}{16} =3+1/2 $
| 12x+24-7x-3=3+3x-4 | | 8x-2=7x+11 | | 2x=3(x–4) | | (7x7)-5+5=28 | | -9=6.3+f | | 18-3x=12x | | a+3.2=-2.6 | | (4)^(n+2)=32 | | 7n-4n+5=16 | | 0.18(y-8)+0.10y=0.20y-0.07(10) | | -3=-6+t | | 3x+2=2-7 | | 18(y-8)+10y=20y-7(10) | | 8/30=x/5 | | 6,2=5+y | | 4(1.25+22.9)÷m=32.2 | | y^2+(-1y+17)^2=164 | | 1/6x+1/3=5/12 | | -2.6+x=4x+3.4 | | (17-y)^2+y^2=164 | | 10x+12-4x=20+40 | | X/2+x/2=15 | | 6x=2x^2-5 | | 2x+13/5+x=2 | | 3x+4/5=3x-2/2 | | 7=-(3-2p) | | 4a+18+8a=5a-7a | | 32-8x=8x-2 | | 9+2t-2=9t+37-2t | | 24x+24+6x=30+4(x7) | | 3x+2=2x+3/13 | | (t)=(t^2+5t-2) |